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It was shown by the writer on a former occasion1 that the course of a 
chemical reaction, as computed from the laws of chemical dynamics, may, 
in certain circumstances, assume an oscillatory character. 

The case considered led, however, to damped oscillations fading off into 
equilibrium, not to a continued periodic process; and reflections of a 
general character on the kinetics of material transformations2 seemed to 
make the occurrence of undamped oscillations, in the absence of geometri­
cal causes (surface films, etc.), appear improbable, since it seemed to de­
mand a very special numerical relation between the reaction constants. 
These, in nature, of course stand generally in no obvious relation. 

I t is, therefore, somewhat contrary to his first expectations that the 
writer now finds the conditions for undamped oscillations may occur in 
the absence of any geometrical causes in a homogeneous system. 

A case which leads to such an effect is, for example, the following. 
A substance S0 is present in constant concentration. (This condition 

may be secured either by providing a large excess, or by using a saturated 
solution in the presence of undissolved substance. In the former case the 
system will be homogeneous, in the latter case it will not be. This 
circumstance has no bearing on the course of the reaction to be con­
sidered except insofar as it provides a constant concentration of the sub­
stance S0. If the system is heterogeneous we shall assume, as on a former 
occasion, that the chemical changes taking place are slow as compared 
with diffusion effects so that these latter may be left out of account.) 
In this system let a substance Si be formed autocatalytically from the sub­
stance S0- Since the concentration of S0 is constant, the rate of forma­
tion of S]. will, in the simplest case, be proportional to the quantity Xx 

of St actually present, so that we may write 

mass of Si formed per unit of time3 = aiX\. (i) 

Let another substance Sa be formed from Si in mono-molecular re­
action, so that we may write 

mass of S2 formed per unit of time = cX\. (2) 
And furthermore let the substance S2 also influence its own formation 

autocatalytically, so that 
1 A. J. Lotka, J. Phys. Chem., 14, 271 (1910); Z. physik. Chem., 7a, 508 (1910); 

80, 159 (1912); see also Hirniak, ibid., 73, 675 (1910); and compare also Lowry and 
John, J. Chem. Soc, 97, 2634 (1910); Rakowski, Z. physik. Chem., 57, 321 (1906). 

8 Lotka, Phys. Rev., 24, 235 (1912); Proc. Am. Acad., 55, 137 (1920); see, in particu­
lar, footnote 13 on page 14s of the latter reference. 

3 At constant volume; masses being, in that case, proportional to concentrations. 
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c = ChX2. {3} 
Likewise let S2 decompose in molecular reaction, so that 

mass of S2 decomposed per unit of time = b2X2. (4) 

.If in the second reaction, S2 alone is formed from Si then we have evi­
dently 

1 = mXi — ChXiX2 (5) 
at 

since, in that case, the amount of Si decomposed is equal to the mass of 
Si formed. 

We may, however, make the more general supposition that along with 
S2 any other substances are formed in proportional amounts. In that case 
we may write 

J V" 

^ 1 = Ci1X1 — Wf1X2 (6) 
dt 

where h is in general different from (greater than) O2. On the other hand, as regards the substance Ss we have 

Ci9XiX2 — btXi. (7) 
dX2 

dt 
The course of events in the system under consideration is now defined 

by Equations 6 and 7. 
Dividing (7) by (6) we obtain 

dXa __ X2(Q2Xi ~bi) /Q\ 
AX1 ~ X1(O1 — hXi) 

( | 2 - b) CtX3 - (o, - ^JdX1. (9) 

Integrating, 
fa log Xi — O2Xi + Oi log X2 -T- biX-z = K. (10) 

Let us put 
Xi = Xi + bi/(h - Xi + p ( n ) 
X2 = Xi + cii/bi = & + q. (12) 

Then (10) becomes 

h log (xi + p) —- a2#i + Oi log (X2 + q) — hx2 ~ K'. (13) 
Expanding the logarithms by Taylor's theorem certain terms are found 

to cancel out and we have 

<io"-S+iF'~-)+<"(ios'-S+$-")=K'-c-4) 

In the immediate neighborhood of the origin of xh X2 this reduces to 
O2Xi2 

- 4 5- = 2(62 log p + O1 log q -
T 

= constant 

= r2, say; 

-K'). (15) 

(16) 

(17) 
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from which it is seen that near the origin the integral curves (10) of (8) 
approach the elliptic form (17). 

More generally the integral curves (10), or their equivalent (13), in 
the positive quadrant of Xi, Xa, are closed curves of some such form as 
indicated in Fig. 1. 

Fig. i.—Diagram showing general character of the integral curves of Equation 8. 
In the positive quadrant of XjX2 these are closed curves, contained entirely within 
that quadrant, and intersecting the aces of XxX1 orthogonally. Near the origin of XiXn 
the curves are very nearly elliptical. 

The solution (10) enables us to plot X$ as a function of X\. 
then plot point for point 

P(X1) = — : — ~ 
CJiAi —- OiAjAj j 

and Equation (6) then takes the form 
dXi 

<p(Xi) 
= d* 

- / ; 
dXi 

We can 

(18) 

(19) 

(20) 

from which we obtain by simple quadrature (e. g., with the planimeter), 
an expression for i a s a function of Xu or, say 

Xl = *!(*). (21) 

In exactly similar manner we obtain 

X2 = **(*) (22) 

thus completing our solution of the system of differential Equations 6, 7. 
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The Character of the Functions $.—It has already been observed 
that within the positive quadrant of XiX2 (which alone interests us, since 
masses cannot be negative) the integral curves (10) are closed curves. 

Furthermore, it can be seen by inspection of (6) that 

CbY1 > 
__ =. o 
dt < 

according as 

(23) 

X, - ^ (24) 

t ha t is to say, by (12), according as 

Xt ;=• O. (25) 

A glance a t Fig. 1 shows t h a t this means the point XiX 2 t ravels in 
counter clockwise direction around the integral curves as the process 
represented by (6), (7) takes i ts course. 

From this, again, i t is plain t ha t $ i (0 , ^2(O are periodic functions of 
t. We may, therefore, expand them into Fourier 's series. 

Xi = $i00 = A0 +Ai cos nt + Bi sin nt ) 
+ A2 cos 2nt + JS2 sin 2ni ) (26) 
+ .... J 

X2 = $2(0 = A'0.+ A'i cos nt + B\ sin nt j 
+ A't cos 2nt + B'2 sin 21U \ (27) 
+ .... J 

The constants n, A, B may be evaluated by substituting (26), (27) in 
(6), (7) and equating coefficients of homologous terms. 

We thus find, in particular, for n 

n — ± Vai62 (28) 
that is to say, the reaction is oscillating, with a period 

T = - H ^ . (29) 
Vai&2 

It is interesting to observe that the amplitude of the oscillation, as 
defined by the constants A, B, A', B', depends on the initial masses 
Xi, X2, but the period of oscillation T is independent of these. Hence if 
two systems of the kind here considered be started off simultaneously, but 
from different initial concentrations, they will forever after keep time with 
each other, although one may be making much greater excursions than the 
other. In terms of Fig. 1 this means, for example, that if one system 
starts from point Pi at a given instant, the other from point P2, they will 
periodically pass through P 1 and P2 simultaneously, though one travels 
in one cycle around the large circuit PIQ1RISIPI the other one around 
the small (nearly) elliptical circuit P2. 
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Two Types of Equilibrium.—It is interesting to note the topography 
of the integral curves about the two equilibrium points. These curves 
have been drawn in dotted lines also in the negative and mixed quadrants 
where they have only a geometrical meaning. 

Around the point 

A i = - or «1 = 0 
a2 

Xr ^ l 
X2 — — or X2 — 0 

Ol 

the curves form closed contour lines, like those which on a map represent 
a mountain crest or a trough-shaped valley. 

On the other hand near the point 
X1 = 0 or X\ = —• p 
X% = 0 or Xi = — q 

the curves follow a course such as the contour lines near a saddle or col 
in a landscape. 

These features are typical of the two kinds of equilibrium. The crest 
corresponds to a center of oscillation. The saddle point corresponds 
to a position of unstable equilibrium. For details regarding this feature 
the reader is referred to a previous publication by the writer.1 

Rhythmic phenomena are of particular interest in connection with 
biological systems (e. g., heart-beat). An extension of the method here 
set forth, in its application to certain biological systems, will appear in a 
forthcoming issue of the Proceedings of the National Academy of Sciences. 

BKOOKF.YH, N . Y. 
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This paper is a continuation of extended researches concerning the 
physico-chemical properties of typical compounds of carbon. It enum­
erates the careful quantitative combustion in an adiabatic calorimeter 
of the following substances, cane sugar, naphthalene, benzoic acid (these 
3 taken as standard substances); benzene, toluene, tertiary butyl ben­
zene, cyclohexanol; together with methyl, ethyl, propyl, butyl and 
isobutyl alcohols. The main features of the present investigation, 
which lead to the hope that it may be an improvement over earlier 

1 Lotka, Science Progress, 14, 406 (1920). 


